Trans-species learning of cellular signaling systems with bimodal deep belief networks

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trans-species learning of cellular signaling systems with bimodal deep belief networks

MOTIVATION Model organisms play critical roles in biomedical research of human diseases and drug development. An imperative task is to translate information/knowledge acquired from model organisms to humans. In this study, we address a trans-species learning problem: predicting human cell responses to diverse stimuli, based on the responses of rat cells treated with the same stimuli. RESULTS ...

متن کامل

Maximum Entropy Learning with Deep Belief Networks

Conventionally, the maximum likelihood (ML) criterion is applied to train a deep belief network (DBN). We present a maximum entropy (ME) learning algorithm for DBNs, designed specifically to handle limited training data. Maximizing only the entropy of parameters in the DBN allows more effective generalization capability, less bias towards data distributions, and robustness to over-fitting compa...

متن کامل

Sparse Feature Learning for Deep Belief Networks

Unsupervised learning algorithms aim to discover the structure hidden in the data, and to learn representations that are more suitable as input to a supervised machine than the raw input. Many unsupervised methods are based on reconstructing the input from the representation, while constraining the representation to have certain desirable properties (e.g. low dimension, sparsity, etc). Others a...

متن کامل

Learning Deep Sigmoid Belief Networks with Data Augmentation

Deep directed generative models are developed. The multi-layered model is designed by stacking sigmoid belief networks, with sparsity-encouraging priors placed on the model parameters. Learning and inference of layer-wise model parameters are implemented in a Bayesian setting. By exploring the idea of data augmentation and introducing auxiliary Pólya-Gamma variables, simple and efficient Gibbs ...

متن کامل

Learning Features from Music Audio with Deep Belief Networks

Feature extraction is a crucial part of many MIR tasks. In this work, we present a system that can automatically extract relevant features from audio for a given task. The feature extraction system consists of a Deep Belief Network (DBN) on Discrete Fourier Transforms (DFTs) of the audio. We then use the activations of the trained network as inputs for a non-linear Support Vector Machine (SVM) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bioinformatics

سال: 2015

ISSN: 1367-4803,1460-2059

DOI: 10.1093/bioinformatics/btv315