Trans-species learning of cellular signaling systems with bimodal deep belief networks
نویسندگان
چکیده
منابع مشابه
Trans-species learning of cellular signaling systems with bimodal deep belief networks
MOTIVATION Model organisms play critical roles in biomedical research of human diseases and drug development. An imperative task is to translate information/knowledge acquired from model organisms to humans. In this study, we address a trans-species learning problem: predicting human cell responses to diverse stimuli, based on the responses of rat cells treated with the same stimuli. RESULTS ...
متن کاملMaximum Entropy Learning with Deep Belief Networks
Conventionally, the maximum likelihood (ML) criterion is applied to train a deep belief network (DBN). We present a maximum entropy (ME) learning algorithm for DBNs, designed specifically to handle limited training data. Maximizing only the entropy of parameters in the DBN allows more effective generalization capability, less bias towards data distributions, and robustness to over-fitting compa...
متن کاملSparse Feature Learning for Deep Belief Networks
Unsupervised learning algorithms aim to discover the structure hidden in the data, and to learn representations that are more suitable as input to a supervised machine than the raw input. Many unsupervised methods are based on reconstructing the input from the representation, while constraining the representation to have certain desirable properties (e.g. low dimension, sparsity, etc). Others a...
متن کاملLearning Deep Sigmoid Belief Networks with Data Augmentation
Deep directed generative models are developed. The multi-layered model is designed by stacking sigmoid belief networks, with sparsity-encouraging priors placed on the model parameters. Learning and inference of layer-wise model parameters are implemented in a Bayesian setting. By exploring the idea of data augmentation and introducing auxiliary Pólya-Gamma variables, simple and efficient Gibbs ...
متن کاملLearning Features from Music Audio with Deep Belief Networks
Feature extraction is a crucial part of many MIR tasks. In this work, we present a system that can automatically extract relevant features from audio for a given task. The feature extraction system consists of a Deep Belief Network (DBN) on Discrete Fourier Transforms (DFTs) of the audio. We then use the activations of the trained network as inputs for a non-linear Support Vector Machine (SVM) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2015
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/btv315